

Journal of Geometry and Physics 32 (1999) 97-101

Spacelike metric foliations

JOURNAL OF GEOMETRY AND PHYSICS

Gerard Walschap¹

Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA

Received 9 February 1999

Abstract

In this paper, we investigate spacelike metric foliations in lightlike complete spacetimes. When such a foliation satisfies the strong energy condition $\operatorname{Ric}^{v}(e) \geq 0$ for timelike vectors e, it must be totally geodesic, and the metric is of higher rank, in the sense that each point of the spacetime is contained inside a flat, totally geodesic, timelike rectangle. If in addition $\operatorname{Ric}^{v}(e) = 0$, then the metric is (at least locally) a product metric, with the leaves of the foliation tangent to one of the factors. © 1999 Elsevier Science B.V. All right reserved.

Subj. Class.: Differential geometry; General relativity 1991 MSC: 53C12; 53C80; 83C75 Keywords: Metric foliation; Spacetime; Raychaudhuri equation

1. Introduction

A foliation (without singular focal loci) of a Riemannian manifold is said to be *metric* if its leaves are locally everywhere equidistant. Equivalently, the leaves of \mathcal{F} coincide, at least locally, with fibers of Riemannian submersions. Such foliations play a key role in the geometry of nonnegatively curved manifolds, cf. [2,4,6]. They are also significant in general relativity: One of the oldest singularity results [7] states that a geodesic, irrotational observer field in a spacetime M that satisfies the strong energy condition ($\operatorname{Ric}(x) \geq 0$ for timelike x) is either incomplete, or else M splits as a metric product.

The above result may be rephrased as follows: Any metric foliation by spacelike hypersurfaces of a timelike complete spacetime M satisfying the strong energy condition splits; i.e., M is locally isometric to a product $(I, dt^2) \times (F, g)$ where I is an interval, and (F, g)is a Riemannian manifold. The leaves of the foliation are the sets $\{t\} \times F, t \in I$. Thus, for

¹ E-mail: gerard@aftermath.math.ou.edu

^{0393-0440/99/\$ –} see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S0393-0440(99)00021-2

example, warped product cosmological models such as the Robertson-Walker spacetime are necessarily timelike incomplete.

Hypersurface foliations, however, have integrable orthogonal complement – the integral curves of the geodesic observer field. A more complicated and mathematically interesting model is that of a metric foliation by spacelike surfaces. Just as in the hypersurface case, the leaves are locally given by fibers of a semi-Riemannian submersion [4], but in this case, the orthogonal complement is no longer necessarily an integrable distribution. These foliations also turn out to be interesting from a physical point of view: In [8], causality of such spacetimes was shown to be well-behaved, and a large class of examples that are globally hyperbolic and satisfy the strong energy condition were constructed.

In this paper, we establish a rigidity result similar to the singularity one described above for hypersurfaces. In the codimension 1 case, the strong energy condition says that for x orthogonal to a leaf, the *vertical Ricci curvature* – i.e., the trace of the self-adjoint curvature transformation on the leaf given by $R(\cdot, x)x$ – is nonnegative. In the codimension 2 case studied here, we show that if the timelike vertical Ricci curvature is nonnegative, and if M is lightlike complete, then the foliation is totally geodesic. Moreover, each point in the spacetime is contained inside a flat totally geodesic rectangle. The argument is based on the study of a Raychaudhuri-type equation for horizontal geodesics which generalizes the classical one. We next discuss some important special cases: For example, if the vertical Ricci curvature is zero, then the foliation splits in the sense above, provided M is lightlike complete.

2. Spacelike metric foliations

v

v

We begin by recalling some basic local properties of semi-Riemannian submersions and foliations. For further details the reader is referred to [4,5,8]. Let \mathcal{F} denote a spacelike metric foliation by surfaces of a spacetime M. \mathcal{F} induces an orthogonal splitting $TM = \mathcal{H} \oplus \mathcal{V}$ of the tangent bundle of M into horizontal and vertical subbundles, with \mathcal{V} tangent to the leaves. We write $e = e^{h} + e^{v}$ for the corresponding decomposition of $e \in TM$. If U is an open set in M, and $\pi : U \to B$ is a local submersion whose fibers coincide with the leaves of \mathcal{F} , then the condition that the foliation be metric means that

$$\langle \pi_* e, \pi_* e \rangle = \langle e^{\mathbf{n}}, e^{\mathbf{h}} \rangle, \qquad e \in TM.$$

The local geometry of \mathcal{F} is determined by two tensor fields: The O'Neill tensor A is the (2,1) tensor field on \mathcal{H} with values in \mathcal{V}

$$A_X Y = \nabla_X Y = \frac{1}{2} [X, Y]^{\mathbf{v}}.$$
 (1)

Thus, the vanishing of A is equivalent to the distribution \mathcal{H} being integrable. The second fundamental tensor of \mathcal{F} is the horizontal 1-form S with values in self-adjoint transformations of \mathcal{V} given by

$$S_X V = -\dot{\nabla}_V X. \tag{2}$$

Thus, the restriction of S to a leaf is merely the second fundamental form of the leaf, and S vanishes along a leaf iff that leaf is totally geodesic.

A vector field X is said to be *basic* if it is the horizontal lift of some vector field on the local quotient manifold determined by \mathcal{F} . [X, V] is always vertical for basic X and vertical V, and if $A_X^* : \mathcal{V} \to \mathcal{H}$ denotes the adjoint of A_X , then

$$\overset{h}{\nabla}_{V}X = \overset{h}{\nabla}_{X}V = -A_{X}^{*}V, \tag{3}$$

provided X is not lightlike. A geodesic γ that is horizontal at one point is everywhere horizontal, and induces local diffeomorphisms f^t between neighborhoods of $\gamma(0)$ in the leaf and corresponding neighborhoods of $\gamma(t)$ by horizontally lifting local projections of γ . The derivative of these "holonomy displacements" is given by $f_*^t u = J(t)$, where J is a nowhere zero Jacobi field along γ with J(0) = u. One can now give a Lorentzian version of a corresponding result for Riemannian manifolds, cf. also [9]:

Lemma. Along a nonnull horizontal geodesic γ , one has the Riccati-type equation

$$S'_{\dot{\gamma}}{}^{v} = S^{2}_{\dot{\gamma}} - A_{\dot{\gamma}} A^{*}_{\dot{\gamma}} + R^{v}_{\dot{\gamma}}, \quad \text{where} \quad R^{v}_{\dot{\gamma}} := R^{v}(\cdot, \dot{\gamma})\dot{\gamma}.$$
(4)

Proof. Consider a holonomy Jacobi field J as above. By (2) and (3),

$$J' = -A_{\dot{\gamma}}^* J - S_{\dot{\gamma}} J.$$
 (5)

Thus, if T is a vertical vector field along γ , then

$$\begin{split} \langle R(T,\dot{\gamma})\dot{\gamma},J\rangle &= -\langle T,J''\rangle = \langle T,(A_{\dot{\gamma}}^{*}J)'^{\vee}\rangle + \langle T,(S_{\dot{\gamma}}J)'^{\vee}\rangle \\ &= \langle T,A_{\dot{\gamma}}A_{\dot{\gamma}}^{*}J\rangle + \langle T,S_{\dot{\gamma}}J\rangle' - \langle T'^{\vee},S_{\dot{\gamma}}J\rangle \\ &= \langle A_{\dot{\gamma}}A_{\dot{\gamma}}^{*}T,J\rangle + \langle S_{\dot{\gamma}}T,J\rangle' - \langle S_{\dot{\gamma}}(T'^{\vee}),J\rangle \\ &= \langle A_{\dot{\gamma}}A_{\dot{\gamma}}^{*}T,J\rangle + \langle (S_{\dot{\gamma}}T)'^{\vee},J\rangle - \langle S_{\dot{\gamma}}^{2}T,J\rangle - \langle S_{\dot{\gamma}}(T'^{\vee}),J\rangle. \end{split}$$

Rearranging terms,

$$\langle (S_{\dot{\gamma}}T)^{\prime \vee} - S_{\dot{\gamma}}(T^{\prime \vee}), J \rangle = \langle (S_{\dot{\gamma}}^2 - A_{\dot{\gamma}}A_{\dot{\gamma}}^* + R_{\dot{\gamma}}^{\vee})T, J \rangle.$$

Since for any t_0 , there exist holonomy fields J_i that form an orthonormal basis of the vertical space at $\gamma(t_0)$, the lemma follows. \Box

For horizontal $e \in T_p M$, the vertical Ricci curvature of e is defined to be $\operatorname{Ric}^{v}(e) = \sum_i \langle R(v_i, e)e, v_i \rangle$, where $\{v_i\}$ denotes an orthonormal basis of the vertical space at p. \mathcal{F} is said to satisfy the strong energy condition if $\operatorname{Ric}^{v}(e) \ge 0$ for all timelike e.

Theorem. If \mathcal{F} satisfies the strong energy condition and M is lightlike complete, then \mathcal{F} is totally geodesic. Moreover, M is foliated by "flats", in the sense that every point of M is contained inside a flat, totally geodesic timelike rectangle.

Proof. For lightlike horizontal e, the adjoint A_e^* of $A_e : \mathcal{H} \cap e^{\perp} \to \mathcal{V}$ is not well defined, because $\mathcal{H} \cap e^{\perp}$ is a degenerate subspace. Nevertheless, $A_e A_e^* : \mathcal{V} \to \mathcal{V}$ is well defined,

because $A_e e = 0$, so that A_e may be considered to have the set $\{x \in \mathcal{H} \cap e^{\perp} \mid x \text{ is spacelike}\}$ as domain. Thus, for a codimension 2 spacelike foliation, $A_e A_e^* = 0$.

Now, let γ be lightlike, and set $s = \frac{1}{2} \operatorname{tr} S_{\dot{\gamma}}$, $B = S_{\dot{\gamma}} - s$ Id, so that B is the trace-free part of $S_{\dot{\gamma}}$. With the standard inner product $\langle B, C \rangle = \operatorname{tr} BC$ on the space of self-adjoint operators on \mathcal{V} , we have $\|S_{\dot{\gamma}}\|^2 = \|B\|^2 + 2s^2$. Taking traces in the Riccati equation (4) then yields

$$s' = s^2 + \frac{1}{2} ||B||^2 + \operatorname{Ric}^v(\dot{\gamma}).$$

It follows that if γ is defined for all parameter values, then s, B, and Ric^v($\dot{\gamma}$) all vanish. Consequently, $S_{\dot{\gamma}} \equiv 0$. Given a parameter value t_0 , decompose $e = \dot{\gamma}(t_0)$ into a sum x + y of spacelike x and timelike y, with $||x||^2 = -\langle y, y \rangle$, and $\langle x, y \rangle = 0$. Then $x \pm y$ is lightlike, so that $0 = S_{x \pm y} = S_x \pm S_y$. Thus, $S \equiv 0$; i.e., the leaves are totally geodesic.

We now proceed to establish the existence of flats in M. If γ denotes any timelike horizontal geodesic, then the image of $A_{\dot{\gamma}}$ is one-dimensional; i.e., $A_{\dot{\gamma}}^*$ has nontrivial kernel. Thus, for any two holonomy fields J_i along γ , the derivatives J'_i are linearly dependent at each point, since $J'_i = -A_{\dot{\gamma}}^* J_i$ by (5) and the theorem. Write $f J'_1 + h J'_2 = 0$ for some functions f and g, and differentiate to obtain

$$(f'J_1' + g'J_2') + (fJ_1'' + gJ_2'') = 0.$$

The expression inside the first set of parentheses is horizontal, whereas the one inside the second set is always vertical since by (5), $J''_i = -R(J_i, \dot{\gamma})\dot{\gamma} = -A_{\dot{\gamma}}A^*_{\dot{\gamma}}J_i$. Thus, both expressions vanish, and $fJ'_1 + gJ'_2 = f'J'_1 + g'J'_2 = 0$. This implies that f and g differ by a multiplicative constant; i.e., $aJ'_1 + bJ'_2 = 0$ for some numbers a and b. But then $J = aJ_1 + bJ_2$ is a parallel Jacobi field along γ , and in particular, $R(J, \dot{\gamma})\dot{\gamma} = 0$.

So far, we have shown the existence of infinitesimal flat rectangles along timelike geodesics. In order to conclude the argument, we claim it suffices to establish the existence of a flat through any point where the A-tensor does not vanish: Indeed, if the set K of points where A vanishes contains an open set U, then the foliation splits locally isometrically over U; i.e., U decomposes as a metric product with the leaves of \mathcal{F} tangent to one of the factors (and one then trivially obtains flats). This is an easy consequence of de Rham's holonomy theorem [1]: The fact that both A and S vanish over U means that the vertical distribution \mathcal{V} is invariant under parallel translation. So consider a point p where A is nonzero, and a local unit vector field T that spans the kernel of A^* . From the arguments in the previous paragraph, the restriction of T along any horizontal timelike geodesic is a parallel Jacobi field. It now only remains to show that T is totally geodesic, for then the rectangle $(t, s) \mapsto \exp_{\gamma(t)} sT$ is flat and totally geodesic. But since the leaves are totally geodesic, $A_X Y$ is a Killing field along leaves [1], so that

$$\langle \nabla_T T, A_X Y \rangle(p) = -\langle T, \nabla_T A_X Y \rangle(p) = 0.$$

Thus, T is a totally geodesic field along each leaf. But since leaves are themselves totally geodesic in M, the claim follows. \Box

Remark. The argument above goes through word for word in the case of a spacelike codimension 2 metric foliation in a Lorentzian manifold of arbitrary dimension, provided the foliation satisfies the strong energy condition.

Corollary. Let \mathcal{F} , M be as in Theorem 1. If $\operatorname{Ric}^{\vee}(e) = 0$ for horizontal timelike e, then \mathcal{F} splits; i.e., M decomposes locally as a metric product, with the leaves of \mathcal{F} coinciding with one of the factors.

Proof. In order to establish the splitting, it suffices, as observed in the proof of the Theorem, to show that $A \equiv 0$. But from (4) and the fact that S is identically zero, we deduce that for a timelike geodesic γ , $R(v, \dot{\gamma})\dot{\gamma} = A_{\dot{\gamma}}A^*_{\dot{\gamma}}v$ for vertical v, so that $\langle R(v, \dot{\gamma})\dot{\gamma}, v \rangle = ||A^*_{\dot{\nu}}v||^2 \ge 0$. Thus, if $\operatorname{Ric}^v(\dot{\gamma}) = 0$, the A-tensor must vanish. \Box

Example. The Corollary implies that the only codimension 2 spacelike metric foliations of Minkowski space are congruent to metric products. This contrasts with the Euclidean case, where such foliations need not, in general, split: Consider for example the free \mathbb{R}^2 -action on $\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2$ given by

$$(s,t)(p,q) = (e^{is}p, q + (s,t)), \qquad (s,t) \in \mathbb{R}^2, \quad (p,q) \in \mathbb{R}^2 \times \mathbb{R}^2.$$

Since this action is by isometries, the leaves are equidistant, and the orbit foliation is metric; it does not, however, split. In fact, the leaves are ruled surfaces, and the only totally geodesic leaf is the one that passes through the origin, cf. also [3].

References

- [1] A. Besse, Einstein Manifolds, Springer, Berlin, 1987.
- [2] D. Gromoll, K. Grove, The low-dimensional metric foliations of Euclidean spheres, J. Differential Geom. 28 (1988) 143–156.
- [3] D. Gromoll, G. Walschap, Metric fibrations in Euclidean space, Asian J. Math. 1 (1997) 716-728.
- [4] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966) 459-469.
- [5] B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1983.
- [6] G. Perelman, Proof of the soul conjecture of Cheeger and Gromoll, J. Differential Geom. 40 (1994) 209-212.
- [7] R.K. Sachs, H. Wu, General Relativity for Mathematicians, Springer, Berlin, 1977.
- [8] G. Walschap, Causality relations on a class of spacetimes. Gen. Rel. Grav. 27 (1995) 721-733.
- [9] G. Walschap, Umbilic foliations and curvature, Illinois J. Math. 41 (1997) 122-128.