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Abstract 

In this paper, we investigate spacelike metric foliations in lightlike complete spacetimes. When 
such a foliation satisfies the strong energy condition Ric”(e) 2 0 for timelike vectors e, it must 
be totally geodesic, and the metric is of higher rank, in the sense that each point of the spacetime 
is contained inside a flat, totally geodesic, timelike rectangle. If in addition Ric”(e) = 0, then the 
metric is (at least locally) a product metric, with the leaves of the foliation tangent to one of the 
factors. 0 1999 Elsevier Science B.V. All right reserved. 

Subj. Class. : Differential geometry; General relativity 
1991 MSC: 53C12; 53C80; 83C75 
Keywords: Metric foliation; Spacetime; Raychaudhuri equation 

1. Introduction 

A foliation (without singular focal loci) of a Riemannian manifold is said to be metric 

if its leaves are locally everywhere equidistant. Equivalently, the leaves of _F coincide, at 
least locally, with fibers of Riemannian submersions. Such foliations play a key role in 
the geometry of nonnegatively curved manifolds, cf. [2,4,6]. They are also significant in 
general relativity: One of the oldest singularity results [7] states that a geodesic, irrotational 
observer field in a spacetime M that satisfies the strong energy condition (Ric(x) 2 0 for 
timelike x) is either incomplete, or else M splits as a metric product. 

The above result may be rephrased as follows: Any metric foliation by spacelike hyper- 
surfaces of a timelike complete spacetime M satisfying the strong energy condition splits; 
i.e., M is locally isometric to a product (I, dt2) x (F, g) where Z is an interval, and (F, g) 
is a Riemannian manifold. The leaves of the foliation are the sets {t) x F, t E I. Thus, for 
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example, warped product cosmological models such as the Robertson-Walker spacetime 
are necessarily timelike incomplete. 

Hypersurface foliations, however, have integrable orthogonal complement - the integral 
curves of the geodesic observer field. A more complicated and mathematically interesting 
model is that of a metric foliation by spacelike surfaces. Just as in the hypersurface case, 
the leaves are locally given by fibers of a semi-Riemannian submersion [4], but in this 
case, the orthogonal complement is no longer necessarily an integrable distribution. These 
foliations also turn out to be interesting from a physical point of view: In [8], causality 
of such spacetimes was shown to be well-behaved, and a large class of examples that are 
globally hyperbolic and satisfy the strong energy condition were constructed. 

In this paper, we establish a rigidity result similar to the singularity one described above 
for hypersurfaces. In the codimension 1 case, the strong energy condition says that for x 
orthogonal to a leaf, the vertical Ricci curvature - i.e., the trace of the self-adjoint curvature 
transformation on the leaf given by R(., x)x - is nonnegative. In the codimension 2 case 
studied here, we show that if the timelike vertical Ricci curvature is nonnegative, and if 
M is lightlike complete, then the foliation is totally geodesic. Moreover, each point in the 
spacetime is contained inside a flat totally geodesic rectangle. The argument is based on 
the study of a Raychaudhuri-type equation for horizontal geodesics which generalizes the 
classical one. We next discuss some important special cases: For example, if the vertical 
Ricci curvature is zero, then the foliation splits in the sense above, provided M is lightlike 
complete. 

2. Spacelike metric foliations 

We begin by recalling some basic local properties of semi-Riemannian submersions and 
foliations. For further details the reader is referred to [4,5,8]. Let F denote a spacelike metric 
foliation by surfaces of a spacetime M. F induces an orthogonal splitting TM = IH @ V 
of the tangent bundle of M into horizontal and vertical subbundles, with V tangent to the 
leaves. We write e = eh + e” for the corresponding decomposition of e E TM. If U is an 
open set in M, and rr : U -+ B is a local submersion whose fibers coincide with the leaves 
of 3, then the condition that the foliation be metric means that 

(rr*e, n*e) = (eh, eh), eETM. 

The local geometry of 3 is determined by two tensor fields: The O’Neill tensor A is the 
(2,l) tensor field on 7f with values in V 

AxY = ;;xY = +[X, Y]". 

Thus, the vanishing of A is equivalent to the distribution ‘Jf being integrable. The second fun- 
damental tensor of F is the horizontal l-form S with values in self-adjoint transformations 
of V given by 

s,yv = -+“x. 
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Thus, the restriction of S to a leaf is merely the second fundamental form of the leaf, and 
S vanishes along a leaf iff that leaf is totally geodesic. 

A vector field X is said to be basic if it is the horizontal lift of some vector field on the 
local quotient manifold determined by FT. [X, V] is always vertical for basic X and vertical 
V,andifA> :V + ‘H denotes the adjoint of Ax, then 

&X=&V = -A;V, (3) 

provided X is not lightlike. A geodesic y that is horizontal at one point is everywhere 
horizontal, and induces local diffeomorphisms f’ between neighborhoods of y(O) in the 
leaf and corresponding neighborhoods of v(t) by horizontally lifting local projections of 
y . The derivative of these “holonomy displacements” is given by f,‘~ = J(t), where J is a 
nowhere zero Jacobi field along y with J(0) = u. One can now give a Lorentzian version 
of a corresponding result for Riemannian manifolds, cf. also [9]: 

Lemma. Along a nonnull horizontal geodesic y, one has the Riccati-type equation 

Si” = S$ - ApA; + RY, where Rr := R”(., 3)p. (4) 

Proof. Consider a holonomy Jacobi field J as above. By (2) and (3), 

J’=-A;J-SpJ. 

Thus, if T is a vertical vector field along y, then 

(R(T, 3)3, J) = -(T, J”) = (T, (A;J)‘“) + (T, (+J)‘“) 

= (T, ApA;J) + (T, SyJ)’ - (T’“, SpJ) 

= (ApA;T, J) + ($T, J)’ - (+(T’“), J) 

= (A,‘A;T, J) + ((S?T)‘“, J) - ($T, J) - ($(T’“), J). 

Rearranging terms, 

(5) 

((S?T)‘” - $(T’“), J) = ((S; - APA; + R;)T, J). 

Since for any to, there exist holonomy fields .Ii that form an orthonormal basis of the vertical 
space at y(to), the lemma follows. 0 

For horizontal e E TpM, the vertical Ricci curvature of e is defined to be Ric”(e) = 
xi (R(vi, e)e, vi), where {vi} denotes an orthonormal basis of the vertical space at p. F is 
said to satisfy the strong energy condition if Ric” (e) 2 0 for all timelike e. 

Theorem. If F satis$es the strong energy condition and M is lightlike complete, then .F 
is totally geodesic. Moreovel; M is foliated by “flats “, in the sense that every point of M is 
contained inside a flat, totally geodesic timelike rectangle. 

Proof. For lightlike horizontal e, the adjoint A9 of A, : ?f fl e’ + V is not well defined, 
because ti n eL is a degenerate subspace. Nevertheless, A,A,* : V + V is well defined, 
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because A,e = 0, so that A, may be considered to have the set {x E ‘FI n e’ 1 x is spacelike) 
as domain. Thus, for a codimension 2 spacelike foliation, A,Az = 0. 

Now, let y be lightlike, and set s = i tr Sp, B = Sp - s Id, so that B is the trace-free 
part of SF. With the standard inner product (B, C) = tr BC on the space of self-adjoint 
operators on V, we have I] 5~ I]* = (1 B II* + 2s *. Taking traces in the Riccati equation (4) 
then yields 

s’ = s* + i ]I BJl* + Ric’(p). 

It follows that if v is defined for all parameter values, then s, B, and Ric”()i) all vanish. 
Consequently, Sy E 0. Given a parameter value to, decompose e = 3 (to) into a sum x + y 
of spacelike x and timelike y, with (In I]* = -(y, y), and (x, y) = 0. Then x f y is lightlike, 
so that 0 = SxfY = 5, f 5,. Thus, S E 0; i.e., the leaves are totally geodesic. 

We now proceed to establish the existence of flats in M. If y denotes any timelike 
horizontal geodesic, then the image of A? is one-dimensional; i.e., AT has nontrivial kernel. 
Thus, for any two holonomy fields Ji along y, the derivatives J: are linearly dependent at 
each point, since J: = -AZ Ji by (5) and the theorem. Write f Ji + hJ; = 0 for some 
functions f and g, and differentiate to obtain 

(f’Ji + g’J$ + (fJ;’ + sJ[> = 0. 

The expression inside the first set of parentheses is horizontal, whereas the one inside the 
second set is always vertical since by (5), JF = -R(Ji, 3)3 = -ApATJi. Thus, both 
expressions vanish, and fJ; + gJ; = f’.!i + g’J; = 0. This implies that f and g differ 
by a multiplicative constant; i.e., aJ; + bJ; = 0 for some numbers a and b. But then 
J = a Jt + b 52 is a parallel Jacobi field along y , and in particular, R (J, +)3 = 0. 

So far, we have shown the existence of infinitesimal flat rectangles along timelike geodesics. 
In order to conclude the argument, we claim it suffices to establish the existence of a flat 
through any point where the A-tensor does not vanish: Indeed, if the set K of points where 
A vanishes contains an open set U, then the foliation splits locally isometrically over U; 
i.e., U decomposes as a metric product with the leaves of F tangent to one of the factors 
(and one then trivially obtains flats). This is an easy consequence of de Rham’s holonomy 
theorem [ 11: The fact that both A and S vanish over U means that the vertical distribution V 
is invariant under parallel translation. So consider a point p where A is nonzero, and a local 
unit vector field T that spans the kernel of A*. From the arguments in the previous paragraph, 
the restriction of T along any horizontal timelike geodesic is a parallel Jacobi field. it now 
only remains to show that T is totally geodesic, for then the rectangle (t, s) H expy (,) ST 
is flat and totally geodesic. But since the leaves are totally geodesic, Ax Y is a Killing field 
along leaves [ 11, so that 

(VTT, AxY)(p) = -(T, v~AxY)(p) = 0. 

Thus, T is a totally geodesic field along each leaf. But since leaves are themselves totally 
geodesic in M, the claim follows. 0 
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Remark. The argument above goes through word for word in the case of a spacelike 
codimension 2 metric foliation in a Lorentzian manifold of arbitrary dimension, provided 
the foliation satisfies the strong energy condition. 

Corollary. Let .F, M be as in Theorem 1. ZfRic”(e) = 0 for horizontal timelike e, then 3 
splits; i.e., M decomposes locally as a metric product, with the leaves of F coinciding with 
one of the factors. 

Proof. In order to establish the splitting, it suffices, as observed in the proof of the 
Theorem, to show that A 3 0. But from (4) and the fact that S is identically zero, we deduce 
that for a timelike geodesic y, R(u, p)3 = ApAZu for vertical v, so that (R(v, )‘)p, V) = 

llAZv1j2 2 0. Thus, if Ric”(p) = 0, the A-tensor must vanish. 0 

Example. The Corollary implies that the only codimension 2 spacelike metric foliations of 
Minkowski space are congruent to metric products. This contrasts with the Euclidean case, 
where such foliations need not, in general, split: Consider for example the free IW*-action 
on Iw4 = R* x [w* given by 

6, t)(p, 4) = (eiSp, 9 + (s, t)), (s, t) E [w*, (p, q) E Iw* x [w*. 

Since this action is by isometries, the leaves are equidistant, and the orbit foliation is metric; 
it does not, however, split. In fact, the leaves are ruled surfaces, and the only totally geodesic 
leaf is the one that passes through the origin, cf. also [3]. 
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