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Abstract

In this paper, we investigate spacelike metric foliations in lightlike complete spacetimes. When
such a foliation satisfies the strong energy condition Ric'(e) > 0 for timelike vectors e, it must
be totally geodesic, and the metric is of higher rank, in the sense that each point of the spacetime
is contained inside a flat, totally geodesic, timelike rectangle. If in addition Ric'(e) = 0, then the
metric is (at least locally) a product metric, with the leaves of the foliation tangent to one of the
factors. © 1999 Elsevier Science B.V. All right reserved.
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1. Introduction

A foliation (without singular focal loci) of a Riemannian manifold is said to be metric
if its leaves are locally everywhere equidistant. Equivalently, the leaves of F coincide, at
least locally, with fibers of Riemannian submersions. Such foliations play a key role in
the geometry of nonnegatively curved manifolds, cf. [2,4,6]. They are also significant in
general relativity: One of the oldest singularity results [7] states that a geodesic, irrotational
observer field in a spacetime M that satisfies the strong energy condition (Ric(x) > 0 for
timelike x) is either incomplete, or else M splits as a metric product.

The above result may be rephrased as follows: Any metric foliation by spacelike hyper-
surfaces of a timelike complete spacetime M satisfying the strong energy condition splits;
i.e., M is locally isometric to a product (/, dtz) x (F, g) where I is an interval, and (F, g)
is a Riemannian manifold. The leaves of the foliation are the sets {t} x F, ¢ € I. Thus, for
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example, warped product cosmological models such as the Robertson—Walker spacetime
are necessarily timelike incomplete.

Hypersurface foliations, however, have integrable orthogonal complement — the integral
curves of the geodesic observer field. A more complicated and mathematically interesting
model is that of a metric foliation by spacelike surfaces. Just as in the hypersurface case,
the leaves are locally given by fibers of a semi-Riemannian submersion [4], but in this
case, the orthogonal complement is no longer necessarily an integrable distribution. These
foliations also turn out to be interesting from a physical point of view: In 8], causality
of such spacetimes was shown to be well-behaved, and a large class of examples that are
globally hyperbolic and satisfy the strong energy condition were constructed.

In this paper, we establish a rigidity result similar to the singularity one described above
for hypersurfaces. In the codimension 1 case, the strong energy condition says that for x
orthogonal to a leaf, the vertical Ricci curvature —i.e., the trace of the self-adjoint curvature
transformation on the leaf given by R(-, x)x — is nonnegative. In the codimension 2 case
studied here, we show that if the timelike vertical Ricci curvature is nonnegative, and if
M is lightlike complete, then the foliation is totally geodesic. Moreover, each point in the
spacetime is contained inside a flat totally geodesic rectangle. The argument is based on
the study of a Raychaudhuri-type equation for horizontal geodesics which generalizes the
classical one. We next discuss some important special cases: For example, if the vertical
Riceci curvature is zero, then the foliation splits in the sense above, provided M is lightlike
complete.

2. Spacelike metric foliations

We begin by recalling some basic local properties of semi-Riemannian submersions and
foliations. For further details the reader is referred to [4,5.8). Let F denote a spacelike metric
foliation by surfaces of a spacetime M. F induces an orthogonal splitting TM = H & V
of the tangent bundle of M into horizontal and vertical subbundles, with V tangent to the
leaves. We write ¢ = e" + e" for the corresponding decomposition of ¢ € TM. If U is an
opensetin M, and 7w : U — B is a local submersion whose fibers coincide with the leaves
of F, then the condition that the foliation be metric means that

(Twe, M) = (eh, eh), eeTM.

The local geometry of F is determined by two tensor fields: The O’Neill tensor A is the
(2,1) tensor field on H with values in V

AxY = Vx¥ = }[X, YT, (1)

Thus, the vanishing of A is equivalent to the distribution H being integrable. The second fun-
damental tensor of F is the horizontal 1-form § with values in self-adjoint transformations
of V given by

SxV = —VyX. )
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Thus, the restriction of S to a leaf is merely the second fundamental form of the leaf, and
S vanishes along a leaf iff that leaf is totally geodesic.

A vector field X is said to be basic if it is the horizontal lift of some vector field on the
local quotient manifold determined by F. [X, V] is always vertical for basic X and vertical
V, and if A}‘( : ¥V — H denotes the adjoint of A x, then

h h
VyX =VxV =—-A}V, 3)

provided X is not lightlike. A geodesic y that is horizontal at one point is everywhere
horizontal, and induces local diffeomorphisms f' between neighborhoods of 3 (0) in the
leaf and corresponding neighborhoods of y (¢) by horizontally lifting local projections of
v . The derivative of these “holonomy displacements” is given by fiu = J(¢), where J is a
nowhere zero Jacobi field along y with J(0) = u. One can now give a Lorentzian version
of a corresponding result for Riemannian manifolds, cf. also [9]):

Lemma. Along a nonnull horizontal geodesic v, one has the Riccati-type equation

S,¥ =S — AyA} + R, where R):=R'(,y)y. 4)

Proof. Consider a holonomy Jacobi field J as above. By (2) and (3),
J/=——A;J—Sy.]. %)
Thus, if T is a vertical vector field along y, then
(R(T, )y, J)=—(T,J") = (T, (A} 1)) + (T, (S, ")
=(T, Ay A} J) + (T, Sy 7Y —(T", $yJ)
=(AyAST, J) +(S; T, JY — (Sp(T™), J)
=(AyAST. J) + ((Sy D)"Y, J) = (ST, J) — (S (T™), J).
Rearranging terms,
(S TYY =S (T™), Iy = ((S}z, — A}-,A; + R;’,)T, J).
Since for any #g, there exist holonomy fields J; that form an orthonormal basis of the vertical

space at y (#p), the lemma follows. O

For horizontal e € T, M, the vertical Ricci curvature of e is defined to be Ric'(e) =
Y i (R(vi, e)e, v;), where {v;} denotes an orthonormal basis of the vertical space at p. F is
said to satisfy the strong energy condition if Ric"(e) > 0 for all timelike e.

Theorem. If F satisfies the strong energy condition and M is lightlike complete, then F
is totally geodesic. Moreover, M is foliated by “flats”, in the sense that every point of M is
contained inside a flat, totally geodesic timelike rectangle.

Proof. For lightlike horizontal e, the adjoint A* of A, : H N el — V is not well defined,
because H N et is a degenerate subspace. Nevertheless, A, A} : V — V is well defined,
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because A.e = 0, so that A, may be considered to have the set {x € HNe™ | x is spacelike}
as domain. Thus, for a codimension 2 spacelike foliation, A, A} = 0.

Now, let y be lightlike, and set s = % trSy, B = 8§, — 5 Id, so that B is the trace-free
part of Sy. With the standard inner product (B, C) = tr BC on the space of self-adjoint
operators on V, we have || 12 = ||B|? + 252 Taking traces in the Riccati equation (4)
then yields

s' = s>+ JIIB|? + Ric*(»).

It follows that if y is defined for all parameter values, then s, B, and Ric"(y) all vanish.
Consequently, Sy = 0. Given a parameter value £y, decompose e = y (fp) into a sum x + y
of spacelike x and timelike y, with ||x I? = —(y, y),and (x, y) = 0. Then x % y is lightlike,
sothat0 = S,+, = Sy £ Sy. Thus, § = 0, i.e,, the leaves are totally geodesic.

We now proceed to establish the existence of flats in M. If y denotes any timelike
horizontal geodesic, then the image of A is one-dimensional; i.e., A; has nontrivial kernel.
Thus, for any two holonomy fields J; along y, the derivatives J; are linearly dependent at
each point, since J/ = —A},J; by (5) and the theorem. Write f J{ 4+ hJ; = 0 for some
functions f and g, and differentiate to obtain

(I +EID+ I +gJ))=0.

The expression inside the first set of parentheses is horizontal, whereas the one inside the
second set is always vertical since by (5), J;' = —R(J;,y)y = —A;A}J;. Thus, both
expressions vanish, and fJ| + gJ; = f'J{ + g'J} = 0. This implies that f and g differ
by a multiplicative constant; i.e., aJ{ 4 bJ, = 0 for some numbers a and b. But then
J = alJ| + bJy is a parallel Jacobi field along y, and in particular, R(J, y)y = 0.
So far, we have shown the existence of infinitesimal flat rectangles along timelike geodesics.

In order to conclude the argument, we claim it suffices to establish the existence of a flat
through any point where the A-tensor does not vanish: Indeed, if the set X of points where
A vanishes contains an open set U, then the foliation splits locally isometrically over U;
i.e., U decomposes as a metric product with the leaves of F tangent to one of the factors
(and one then trivially obtains flats). This is an easy consequence of de Rham’s holonomy
theorem [1]: The fact that both A and S vanish over U means that the vertical distribution V
is invariant under parallel translation. So consider a point p where A is nonzero, and a local
unit vector field T that spans the kernel of A*. From the arguments in the previous paragraph,
the restriction of T along any horizontal timelike geodesic is a parallel Jacobi field. It now
only remains to show that T is totally geodesic, for then the rectangle (¢, s) — exp, (, sT
is flat and totally geodesic. But since the leaves are totally geodesic, A xY is a Killing field
along leaves [1], so that

(VrT, AxY)(p) = —(T, Vr AxY)(p) = 0.

Thus, T is a totally geodesic field along each leaf. But since leaves are themselves totally
geodesic in M, the claim follows. O
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Remark. The argument above goes through word for word in the case of a spacelike
codimension 2 metric foliation in a Lorentzian manifold of arbitrary dimension, provided
the foliation satisfies the strong energy condition.

Corollary. Let F, M be as in Theorem 1. If Ric" (e) = 0 for horizontal timelike e, then F
splits; i.e., M decomposes locally as a metric product, with the leaves of F coinciding with
one of the factors.

Proof. In order to establish the splitting, it suffices, as observed in the proof of the
Theorem, to show that A = 0. But from (4) and the fact that § is identically zero, we deduce
that for a timelike geodesic y, R(v, y)y = Ay A;v for vertical v, so that (R(v, y)y,v) =
A3 v||* > 0. Thus, if Ric'(y) = 0, the A-tensor must vanish. O

Example. The Corollary implies that the only codimension 2 spacelike metric foliations of
Minkowski space are congruent to metric products. This contrasts with the Euclidean case,
where such foliations need not, in general, split: Consider for example the free R2-action
on R* = R? x R? given by

,0P.q) = p,g+,1), (.0DeR: (pg) eR* xR

Since this action is by isometries, the leaves are equidistant, and the orbit foliation is metric;
it does not, however, split. In fact, the leaves are ruled surfaces, and the only totally geodesic
leaf is the one that passes through the origin, cf. also [3].
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